Effect of chemical reactions on decaying isotropic turbulence

نویسندگان

  • M. Pino
  • Graham V. Candler
چکیده

There have been many studies of turbulent combustion flows, however the interaction between turbulent motion and the chemical reactions that occur in hypersonic flows has not been studied. In these flows, the rate of product formation depends almost exclusively on the temperature, and small temperature fluctuations may produce large changes in the rate of product formation. To study this process, we perform direct numerical simulations of reacting isotropic turbulence decay under conditions typical of a hypersonic turbulent boundary layer flow. We find that there is a positive feedback between the turbulence and exothermic reactions. That is, positive temperature fluctuations increase the reaction rate, thereby increasing the heat released by the reaction, which further increases the temperature. Simultaneously, the pressure increases causing localized expansions and compressions that feed the turbulent kinetic energy. The Reynolds stress budget shows that the feedback occurs through the pressure-strain term. We also find that the strength of the feedback depends on how much heat is released, the rate at which it is released, and the turbulent Mach number. The feedback process is negative for endothermic reactions, and temperature fluctuations are damped. © 1998 American Institute of Physics. @S1070-6631~98!00307-9#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference

Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...

متن کامل

Effect of chemical reactions on the decay of isotropic homogeneous turbulence

Direct numerical simulations, (DNS), are used to simulate the decay of an isotopic, turbulent, chemically-reacting flow at high temperatures. The independent parameters that govern the physical process are introduced. The different effects from each of the parameters in the flow are explained by using the results from the DNS. It is found that there is a feedback mechanism between the chemical ...

متن کامل

Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence.

Decaying homogeneous isotropic turbulence in inertial and rotating reference frames is investigated to evaluate the capability of the lattice Boltzmann method in turbulence. In the inertial frame case, the decay exponents of kinetic energy and dissipation and the low wave-number scaling of the spectrum are studied. The results are in agreement with classical ones. In the frame-rotation case, si...

متن کامل

Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence.

The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the...

متن کامل

Strong universality in forced and decaying turbulence in a shell model.

The weak version of universality in turbulence refers to the independence of the scaling exponents of the nth order structure functions from the statistics of the forcing. The strong version includes universality of the coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We demonstrate that shell models of turbulence exhibit strong universal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998